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Abstract

Copper nanoparticles (CuNPs) are of great interest due to their extraordinary properties such as high surface-to-volume
ratio, high yield strength, ductility, hardness, flexibility, and rigidity. CuNPs show catalytic, antibacterial, antioxidant, and
antifungal activities along with cytotoxicity and anticancer properties in many different applications. Many physical and
chemical methods have been used to synthesize nanoparticles including laser ablation, microwave-assisted process,
sol-gel, co-precipitation, pulsed wire discharge, vacuum vapor deposition, high-energy irradiation, lithography, mechanical
milling, photochemical reduction, electrochemistry, electrospray synthesis, hydrothermal reaction, microemulsion, and
chemical reduction. Phytosynthesis of nanoparticles has been suggested as a valuable alternative to physical and
chemical methods due to low cytotoxicity, economic prospects, environment-friendly, enhanced biocompatibility, and
high antioxidant and antimicrobial activities. The review explains characterization techniques, their main role, limitations,
and sensitivity used in the preparation of CuNPs. An overview of techniques used in the synthesis of CuNPs, synthesis
procedure, reaction parameters which affect the properties of synthesized CuNPs, and a screening analysis which is used
to identify phytochemicals in different plants is presented from the recent published literature which has been reviewed
and summarized. Hypothetical mechanisms of reduction of the copper ion by quercetin, stabilization of copper
nanoparticles by santin, antimicrobial activity, and reduction of 4-nitrophenol with diagrammatic illustrations are given.
The main purpose of this review was to summarize the data of plants used for the synthesis of CuNPs and open a new
pathway for researchers to investigate those plants which have not been used in the past.
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Background
Nanoparticles (NPs) have a number of interesting appli-
cations in the industrial field such as space technology,
magnetism, optoelectronics and electronics, cosmetics,
and catalytic, pharmaceutical, biomedical, environmen-
tal, and energy applications [1, 2]. The extraordinary
properties of NPs such as ductility, high yield strength,
hardness, flexibility, rigidity, high surface-to-volume
ratio, macroquantum tunneling effect, and quantum size
are attributable as compared to properties of bulk
materials having the same chemical composition [3].

Indeed, the properties of NPs, which may considerably
differ from those observed for fine particles, are higher
specific surface area, specific optical properties, lower
melting points, specific magnetizations, mechanical
strength, and numerous industrial applications [4].
Copper nanoparticles (CuNPs) are of great interest due
to easy availability, low cost, and their similar properties
to those of noble metals [5–9]. CuNPs can also be used
in sensors, heat transfer systems [10–12], and electronics
(fuel cell and solar cell), as catalysts in many reactions
and as bactericidal and antimicrobial agents used to coat
hospital equipment [13–19].
Many physical and chemical methods including laser

ablation [20], microwave-assisted process, sol-gel [21],
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co-precipitation [22], pulsed wire discharge [23], vacuum
vapor deposition [24], high-energy irradiation [25],
lithography [26], mechanical milling [27], photochemical
reduction, electrochemistry [28–32], electrospray syn-
thesis [33], hydrothermal reaction [34], microemulsion
[35], and chemical reduction are used to synthesize
nanoparticles. Although physical and chemical methods
produce well-defined and pure nanoparticles, these
methods are neither cost-effective nor eco-friendly due
to the use of toxic chemicals. One of the most important
criteria of nanotechnology is the development of eco-
friendly, nontoxic, and clean green chemistry procedures
[36]. Hence, biosynthesis of nanoparticles contains a
green chemistry-based method which employs different
biological bodies such as plants [37, 38], actinomycetes
[39, 40], fungus [41–44], bacteria [45–49], yeast [50–52],
and viruses [53, 54]. Biological entities offer a nontoxic,
clean, and environment-friendly approach to synthesize
the NPs with a wide range of size, physicochemical
properties, shapes, and compositions [55].
Copper nanoparticles were synthesized and stabilized in

the literature by using different plants such as Euphorbia
esula [56], Punica granatum [57], Ocimum sanctum [58],
Ginkgo biloba [59], Calotropis procera [60], Lawsonia iner-
mis [61], Citrus medicalinn [62], Camellia sinensis [63],
Datura innoxia [64], Syzygium aromaticum [65], Sesamum
indicum [66], Citrus limon, Turmeric curcumin [67],
Gloriosa superba L. [68], Ficus carica [69], Aegle marmelos
[70], Caesalpinia pulcherrima [71], Cassia fistula [72],
Leucas aspera, Leucas chinensis [73], Delonix elata [74],
Aloe barbadensis Miller [75], Thymus vulgaris [76], Phyl-
lanthus emblica [77], Magnolia kobus [78], Eucalyptus [79],
Artabotrys odoratissimus [80], Capparis zeylanica [81],Vitis
vinifera [82], Hibiscus rosa-sinensis [83], Zingiber officinale
[84], Datura metel [85], Zea mays [86], Urtica, Matricaria
chamomilla, Glycyrrhiza glabra, Schisandra chinensis,
Inula helenium, Cinnamomum [87], Dodonaea viscosa [88],
Cassia auriculata [89], Azadirachta indica, Lantana cam-
era, Tridax procumbens [90], Allium sativum [91], Aspara-
gus adscendens, Bacopa monnieri, Ocimum bacilicum,
Withania somnifera [92], Smithia sensitiva, Colocasia escu-
lenta [93], Nerium oleander [94], and Psidium guajava
[95]; by using different algae/fungi such as Phaeophyceae
[96], Stereum hirsutum [97], and Hypocrea lixii [98]; and by
using some microorganisms such as Pseudomonas fluores-
cens [99] and Enterococcus faecalis [100] cultures.

Biosynthesis of Copper Nanoparticles
Parts of Plant Used for Extract
Different parts of plants are used for the preparation of
plant extracts such as leaves, seeds, barks, fruits, peel,
coir, roots, and gum. Leaves and roots are used in two
ways. Firstly, fresh leaves and roots are used for the

preparation of plant extracts, and secondly, dry leaves
and roots in powder form are used.

Procedure for the Synthesis of CuNPs
For the synthesis of CuNPs, plant extract was prepared by
using different parts of different plants. For synthesis of
the extract part of the plant of interest, leaves are
collected and washed with tap water and then with dis-
tilled water to remove dust particles. The washed leaves
are used further in two ways. First, these leaves are sun
dried for 1–2 h to remove the residual moisture. Known
weights of these sun-dried leaves are divided into small
parts and soaked in deionized water or ethanol solution.
This mixture is stirred for 24 h at room temperature by
using a magnetic stirrer and then filtered for further use.
Second, these leaves are sun dried for 4–7 days or dried in
an oven at 50 °C for 1 day and powdered using a domestic
blender. Known weight of plant powder is mixed in water
or ethanol solution and then stirred and filtered.
For the synthesis of CuNPs, aqueous solution of pre-

cursor salts such as copper sulfate, copper chloride,
copper acetate, and copper nitrate with different concen-
trations is mixed with plant extract. Aqueous solution of
sodium hydroxide is also prepared and added to the re-
action mixture to control the pH medium. The reaction
mixture is strongly shaken for different time intervals in
an electric shaker and heated in an oven at different
time intervals and at different temperatures. The forma-
tion of CuNPs can also take place at room temperature
and is confirmed by changing the color of the reaction
mixture. At the end, nanoparticles were centrifuged and
dried at different temperatures. Reaction optimizations
take place by changing the pH of the mixture, concen-
tration of precursor salt, heating time, and temperature
of reaction mixture. In the literature, different plants
have been used for the formation of copper nanoparti-
cles by using different precursor salts with different reac-
tion conditions as shown in Table 1. From the table, it
can be seen that the different reaction conditions affect
the shape and size of copper nanoparticles.

Effect of Reaction Parameters on Properties of NPs
The concentration of plant extract plays a main role in
reducing and stabilizing the CuNPs. It has been reported
that by increasing the concentration of plant extract, the
number of particles increased [88]. By increasing the
concentration of plant extract, the concentration of phy-
tochemicals increased and the reduction of copper salt
also increased. Due to the fast reduction of the metal
salt, the size of the nanoparticles also decreased [101].
The size and structure of CuNPs are highly affected by

the copper salt. The morphology of nanoparticles
changes when the salt (e.g., copper chloride, copper acet-
ate, copper nitrate, or copper sulfate) is used in the
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presence of sodium hydroxide. It was reported that the
shape was triangular and tetrahedron in the case of cop-
per chloride, rod-shaped in the case of copper acetate,
and spherical in the case of copper sulfate [102]. By in-
creasing the concentration of the precursor salt, the size
of the CuNPs also increased.
The synthesis of CuNPs gives best results by varying the

pH of the reaction medium within the preferred range.
The size of nanoparticles was controlled by changing the
pH value of the reaction mixture. At higher pH, smaller-
sized nanoparticles were obtained compared to those ob-
tained at low pH value. This difference can be attributed
to the difference in reduction rate of the metal salts by
plant extract. The inverse relation between the value of
pH and the size of nanoparticle showed that an increase
in pH value enables us to obtain small-sized spherical
nanoparticles while a decrease in pH value gives large-
sized (rod-shaped and triangular) nanoparticles. The effect
on absorption spectra of different values of pH (4, 6, 8, 10,
and 12) is represented in Fig. 1 [36]. It was reported that
the addition of plant extract to CuCl2 did not lead to the
formation of CuNPs but, instead, the CuNPs were ob-
tained by changing the pH of the reaction mixture to basic
medium. The same behavior was observed by Wu and
Chen, and it was concluded that pH plays an important
role in the synthesis of CuNPs [103].

Mechanism for Phytosynthesis of Copper
Nanoparticles
Phytochemical Screening: a Qualitative Analysis
Phytochemical screening analysis is a chemical analysis
carried out for the detection of phytochemicals in different
plants. Fresh plant extract with chemicals or chemical
reagents is used for this analysis [77] as shown in Table 2.

Phytochemicals for Reduction of Metal and Stabilizing the
NPs
Green synthesis of CuNPs by the use of phytochemicals
offers more flexible control over the shape and size of
the NPs (i.e., by changing reaction temperature, concen-
tration of plant extract, metal salt concentration, reac-
tion time, and pH of reaction mixture). Color change of
the reaction medium indicates reduction of the metal
ion and formation of NPs. The green reduction of the
copper salts starts instantly, and the formation of copper
nanoparticles is indicated by the color change of the re-
action mixture. Phytochemicals have a main role in first
reducing the metal ions and then stabilizing the metal’s
nuclei in the form of nanoparticles as shown in Fig. 2.
The interaction of phytochemicals with metal ions and
the concentration of these phytochemicals control the
shape and size of CuNPs.
Flavonoids contain polyphenolic compounds, e.g.,

quercetin, catechins, flavanones, isoflavones, santin, pen-
duletin, alizarin, pinocembrin, anthocyanins, flavones,
tannins, and saponins, which are present in different
plants such as Ginkgo biloba [59], Citrus medicalinn
[62], Phyllanthus emblica [77], Hibiscus rosa-sinensis
[83], and Dodonaea viscosa [93]. These compounds play
a main role in reducing and chelating the metal. Various
functional groups present in the flavonoids are respon-
sible for the reduction of the copper ion. It has been as-
sumed that a reactive hydrogen atom in the flavonoids
may be released during the tautomeric alterations of the
enol form to the keto form which can reduce copper
ions to form copper nuclei or CuNPs. For example, it is
assumed that in the case of Ginkgo biloba plant extracts,
it is the transformation of quercetin (flavonoid) which
plays a main role in the reduction of copper metal ions
into copper nuclei or CuNPs due to the change of enol
form to keto form as shown in Fig. 3.
During the synthesis process of CuNPs, metal ions with

monovalent or divalent oxidation states are converted into
zero-oxidation copper nuclei and these nuclei are merged
to obtain different shapes. During the nucleation, nuclei
aggregate to form different shapes such as wires, spheres,
cubes, rods, triangles, pentagons, and hexagons. Some fla-
vonoids have an ability to chelate the CuNPs with their π
electrons and carbonyl groups. Quercetin and santin are
flavonoids with strong chelating activity due to the pres-
ence of two functional groups involving the hydroxyls and
carbonyls. These groups chelate with copper nanoparticles
by following the previous mechanism and also explain the
ability of adsorption of santin (flavonoid) on the surface of
CuNPs as shown in Fig. 4.
It was assumed that the protein molecules (superoxide

dismutase, catalase, glutathione) in different plants such
as Hibiscus rosa-sinensis [83] and Camellia sinensis
[104] display a high reducing activity for the formation

Fig. 1 Parts of the plant used for the preparation of plant extract
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of nanoparticles from metal ions but their chelating
activity is not excessive. Sugars such as monosaccharides
(glucose), disaccharides (maltose and lactose), and
polysaccharides in Camellia sinensis plant [63] can act
as reducing agents or antioxidants and have a series of
tautomeric transformations from ketone to aldehyde.
Other phytochemicals such as polyphenols (e.g., ellagic

acid and gallic acid) which are present in Hibiscus rosa-
sinensis [40], phenylpropanoids (phenylalanine, tyrosine)
in Aegle marmelos [70], terpenoids in Ocimum sanctum
and Asparagus adscendens [58, 92], cysteine proteases in
Calotropis procera [60], curcuminanilineazomethine in
Turmeric curcumin [67], ascorbic acid in Citrus medica-
linn [62], eugenol in Syzygium aromaticum [65], and al-
kaloids in Aegle marmelos [70] play the same role of
reducing the copper ions and stabilizing the copper
nanoparticles. Carbohydrates, anthraquinone, quinone,

and anthocyanoside in Phyllanthus emblica [77]; lignins
and xanthones in Hibiscus rosa-sinensis [83]; and cardiac
glycoside, triterponoid, carotenoid glycoside, and anthra-
quinone glycoside in Colocasia esculenta plant [93] are
also phytochemicals which are present in extracts of
different plants and act as reducing and stabilizing
agents. Examples of certain phytochemicals with struc-
tures are shown in Fig. 5.

Characterization Techniques
For characterization of synthesized nanoparticles, differ-
ent techniques were used such as ultraviolet-visible spec-
troscopy (UV-vis), transmission electron microscopy
(TEM), small-angle X-ray scattering (SAXS), Fourier
transform infrared spectroscopy (FTIR), X-ray fluores-
cence spectroscopy (XRF), X-ray diffraction (XRD),
X-ray photoelectron spectroscopy (XPS), scanning

Table 2 Phytochemical screening analysis

Test for phytochemicals Amount of plant extract Chemicals used End point for confirmation of phytochemical

Carbohydrate 2 mL Few drops of concentrated sulfuric
acid and 1 mL of Molisch’s reagent

Reddish or purple color

Tannins 2 mL 4 mL of 5% ferric chloride Greenish black or dark blue color

Saponins 2 mL 2 mL of distilled water and shake
for 15 min

Layer of foam on surface

Flavonoids 2 mL 1 mL of 2 N sodium hydroxide Yellow color

Alkaloids 2 mL Few drops of Mayer’s reagent and
2 mL of concentrated HCl

White precipitate or green color

Anthraquinone 1 mL Few drops of 10% ammonia solution Pink color precipitates

Anthocyanosides 1 mL of filtrate 5 mL HCl Pale pink color

Fig. 2 A protocol for reducing the metal ions and then stabilizing the metal’s nuclei

Din et al. Nanoscale Research Letters  (2017) 12:638 Page 7 of 15



electron microscopy (SEM), field emission scanning
electron microscopy (FESEM), particle size analysis
(PSA), Malvern Zetasizer (MZS), energy-dispersive X-ray
spectroscopy (EDX/EDS), nanoparticle tracking analysis
(NTA), X-ray reflectometry (XRR), Brunauer-Emmett-
Teller analysis (BET), selected area electron diffraction
(SAED), and atomic force microscopy (AFM) (Table 3).

Applications of Copper Nanoparticles
Due to their outstanding chemical and physical proper-
ties, large surface-to-volume ratio, constantly renewable
surface, low cost, and nontoxic preparation, CuNPs have
been of great interest for applications in different fields.
Copper nanoparticles show catalytic activity,

antibacterial activity, cytotoxicity or anticancer activity,
antioxidant activity, and antifungal activity in different
applications. In catalytic activity, copper nanoparticles
are used for the Huisgen [3 + 2] cycloaddition of alkynes
and azides in many solvents under ligand-free conditions
[59], 1-methyl-3-phenoxy benzene, 3,3-oxybis(methyl-
benzene) [94], synthesis of 1-substituted 1H-1,2,3,4-
tetrazole [76], adsorption of nitrogen dioxide, and
adsorption of sulfur dioxide [66]. In most of the transi-
tion metals catalyzed, Ullmann coupling-reaction li-
gands, such as phosphines, are reported in the literature
and most ligands are expensive, difficult to prepare, and
moisture sensitive. For this work, synthesized copper
nanoparticles are used for ligand-free Ullmann coupling

Fig. 3 Reduction of copper ions by quercetin

Fig. 4 Stabilization of copper nanoparticles by santin
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of diphenyl ether. Different dyes and toxic organic com-
pounds and pesticides present in industrial waste are
very harmful for the environment and living organisms.
Copper nanoparticles are used for degradation of differ-
ent dyes such as methylene blue [73], degradation of
atrazine [86], and reduction of 4-nitrophenol [76].
Among the antimicrobial agents, copper compounds

have been commonly used in agriculture as herbicides
[105], algaecides [106], fungicides [107], and pesticides
as well as in animal husbandry as a disinfectant [108]
(shown in Table 4). The biogenic copper nanoparticles
showed powerful antibacterial activity against gram-
positive and gram-negative pathogens such as Pseudo-
monas aeruginosa (MTCC 424), Micrococcus luteus
(MTCC 1809), Enterobacter aerogenes (MTCC 2832)
[57], Salmonella enterica (MTCC 1253), Rhizoctonia
solani, Xanthomonas axonopodis pv. citri, Xanthomonas
axonopodis pv. punicea [58], Escherichia coli (ATCC
14948) [62], Staphylococcus aureus (ATCC 25923), Ba-
cillus subtilis (ATCC 6633), Pediococcus acidilactici [69],
and Klebsiella pneumoniae (MTCC 4030). In antifungal
activity, copper nanoparticles are used against Alterneria
carthami, Colletotrichum gloeosporioides, Colletotrichum
lindemuthianum, Drechslera sorghicola, Fusarium oxy-
sporum f.sp. carthami, Rhizopus stolonifer, Fusarium

oxysporum f.sp. ciceris, Macrophomina phaseolina, Fu-
sarium oxysporum f.sp. udum, Rhizoctonia bataticola
[58], Candida albicans, Curvularia, Aspergillus niger,
and Trichophyton simii [67]. In cytotoxicity, copper
nanoparticles are used for a study on HeLa, A549,
MCF7, MOLT4, and BHK21 cell lines (cancer tumors)
[60, 104].

Hypothetical Mechanism of Antimicrobial Activity
It was observed that CuNPs have an excellent antimicro-
bial activity and only limited reports presented the
mechanism of the antibacterial activity of copper nano-
particles in the literature, but these mechanisms were
hypothetical. It was observed that bacteria and enzymes/
proteins were destroyed due to the interaction of CuNPs
with –SH (sulfhydryl) group [109, 110]. It was also re-
ported that the helical structure of DNA molecules be-
come disturbed by the interaction of CuNPs [111]. The
interaction of CuNPs with the cell membrane of bacteria
decreased the transmembrane electrochemical potential,
and due to the decrease in transmembrane electrochem-
ical potential, it affected the membrane integrity [112]. It
was assumed that metal NPs release their respective
metal ions. Copper nanoparticles and copper ions accu-
mulate on the cell surface of the bacteria and form pits

Fig. 5 Phytochemicals with their structures
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in the membrane, causing leakage of the cellular compo-
nent from the cell and inside the cell, causing oxidative
stress which leads to cell death [112–114]. A hypothet-
ical mechanism of antibacterial activity representing the
above possibilities is shown in Fig. 6.

Catalytic Activity for Reduction of 4-Nitrophenol
4-Nitrophenol (4-NP) which is usually found in agricul-
tural wastewaters and industrial products is hazardous
and not environment-friendly. Hydrogenation or reduc-
tion of 4-NP, which is converted into 4-aminophenol (4-
AP), takes place in the presence of CuNPs. CuNPs can
catalyze the reaction to overcome the kinetic barrier by
assisting electron transfer from the donor borohydrate
ions to the acceptor 4-NP.

Catalytic activity of the synthesized CuNPs has been
studied in the reduction of 4-nitrophenol in aqueous
medium at room temperature in the presence of aque-
ous solution of sodium borohydride [56]. The reduction
of 4-NP by using CuNPs is a simple and environment-
friendly process. Catalytic efficiency of CuNPs for the re-
duction of 4-NP was examined by using a UV-vis spec-
trometer. It was observed that the maximum absorption
peak for 4-NP in aqueous medium was at 317 nm and
the adsorption peak shifted to 403 nm by adding sodium
borohydride due to the formation of 4-nitrophenolate
ions. A peak at 403 nm remained unaffected even after
2 days, which indicated that the reduction of 4-NP can-
not take place in the absence of a catalyst. After adding
the CuNPs, the absorption peak of the solution shifted

Table 3 Characterization techniques and limitations

Technique Main role Limitations Sensitivity Ref.

Ultraviolet-visible spectroscopy
(UV-vis)

Concentration and shape of NPs can
be measured

Only for liquid samples UV-visible regions
200–800 nm

[22]

Fourier transform infrared
spectroscopy (FTIR)

Nature of bonds and functional groups
can be determined

Structure and size of NPs cannot be
measured

20 Å–1 μm [22]

X-ray diffraction (XRD) Size and crystallinity of nanoparticles
can be measured

Composition of NPs and plasmon
cannot be found

1 nm [36]

Scanning electron microscopy
(SEM)

Shape and size of nanostructures can
be determined

Samples must be solid and cannot
detect elements with atomic number
< 11

< 1 nm [115]

Field emission scanning electron
microscopy (FESEM)

All structural and morphological
investigations are carried out by this
technique

Does not give a concentration of NPs < 1 nm [117]

Transmission electron microscopy
(TEM)

Shape and size of nanostructures can
be determined

Particles with size < 1.5 nm cannot be
determined

< 1.5 nm [92]

Particle size analysis (PSA) Measured the distribution of size in
the sample of solid or liquid
particulate materials

– 1 nm–1 μm [57,
58]

Malvern Zetasizer (MZS) Measured the size of NPs, zeta
potential, and protein mobility

In nanorange – [58]

Energy-dispersive X-ray
spectroscopy (EDX/EDS)

Composition of NPs can be analyzed Particles with size < 2 nm cannot be
analyzed

< 2 nm [59,
60]

Nanoparticle tracking analysis
(NTA)

Visualize and measure particle size,
concentration, and fluorescent
properties of a nanoparticle

– 30–10 nm [62]

Small-angle X-ray scattering
(SAXS)

Size and shape conformation Lower resolution range 50–10 Å [116]

X-ray reflectometry (XRR) Determination of thickness, density,
and roughness

Layer thickness 0.1–1000 nm – [116]

X-ray fluorescence spectroscopy
(XRF)

Chemical composition and
concentration can be measured

Limited in their ability to measure
precisely and accurately

– [76]

X-ray photoelectron spectroscopy
(XPS)

Elemental composition of
nanoparticles can be analyzed

Decomposition of samples occurred 3–92 nm [78]

Brunauer-Emmett-Teller analysis
(BET)

Specific surface area is measured 0.35–2 nm [76]

Selected area electron diffraction
(SAED)

Technique that can be performed
inside a TEM

Cannot be recommended for
quantitative identification techniques

– [76]

Atomic force microscopy (AFM) Particle size and characterization For gas and liquid samples 1 nm–8 μm [88]
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Table 4 Catalytic, antibacterial, cytotoxicity or anticancer, antioxidant, and antifungal activities of copper nanoparticles
Biological entity Activity In/against Concentration of NPs References

Euphorbia esula Catalytic Reduction of 4-nitrophenol 25 μL [56]

Catalytic Ligand-free Ullmann coupling of diphenyl ether, 1-methyl-3-phenoxy
benzene, and 3,3-oxybis(methylbenzene)

1 mL [56]

Punica granatum Antibacterial Enterobacter aerogenes, Micrococcus luteus, Salmonella enterica, and
Pseudomonas aeruginosa

100 μg/L [57]

Ocimum sanctum Antibacterial Rhizoctonia solani, Xanthomonas axonopodis pv. citri, Xanthomonas
axonopodis pv. punicea

– [58]

Antifungal Alterneria carthami, Colletotrichum gloeosporioides, Colletotrichum
lindemuthianum, Drechslera sorghicola, Fusarium oxysporum f.sp.
carthami, Rhizopus stolonifer, Fusarium oxysporum f.sp. ciceris,
Macrophomina phaseolina, Fusarium oxysporum f.sp. udum, and
Rhizoctonia bataticola

– [58]

Ginkgo biloba Catalytic Huisgen [3 + 2] cycloaddition of azides and alkynes 10 mol% [59]

Calotropis procera Cytotoxicity Study on HeLa, A549, and BHK21 cell lines (cancer tumors) 120 μM [60]

Citrus medicalinn Antibacterial Propionibacterium acnes (MTCC 1951), Salmonella typhi
(ATCC 51812),
K. pneumoniae (MTCC 4030), P. aeruginosa, and Escherichia coli

20 μL [62]

Antifungal Fusarium culmorum (MTCC 349) and Fusarium oxysporum
(MTCC 1755)

20 μL [62]

Camellia sinensis Antibacterial Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus,
and Bacillus subtilis

2, 4, 6, and
8 μg/L

[63]

Anticancer HT-29, MCF7, and MOLT4 cell lines 80 μg/mL [104]

Datura innoxia Antibacterial Xanthomonas oryzae pv. oryzae [64]

Sesamum indicum Catalytic Adsorption of nitrogen dioxide and sulfur dioxide 0.01–0.06 g [66]

Citrus limon and
Turmeric curcumin

Antibacterial Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus,
and Bacillus subtilis

– [67]

Antifungal Candida albicans, Curvularia, Aspergillus niger, Trichophyton simii – [67]

Ficus carica Antibacterial Pediococcus acidilactici 10 μg/mL [69]

Leucas aspera Catalytic Degradation of methylene blue 1 mL [73]

Thymus vulgaris Catalytic Reduction of 4-nitrophenol and synthesis of 1-substituted
1H-1,2,3,4-tetrazole

50 g and 15
mg, respectively

[76]

Phyllanthus emblica Antibacterial Staphylococcus aureus and Escherichia coli – [77]

Magnolia kobus Antibacterial Escherichia coli (ATCC 25922) – [78]

Capparis zeylanica Antibacterial Gram-positive and gram-negative pathogens – [81]

Vitis vinifera Antibacterial Bacillus subtilis and Escherichia coli (ATCC 25922) – [82]

Hibiscus rosa-sinensis Antibacterial Bacillus subtilis and Escherichia coli (ATCC 25922) – [83]

Antioxidant Hydrogen peroxide scavenging assay was assessed – [83]

Zingiber officinale Antibacterial Staphylococcus aureus (ATCC 25923), Bacillus subtilis, and
Escherichia coli

– [84]

Zea mays Catalytic Degradation of atrazine 30 mg [86]

Dodonaea viscosa Antibacterial Staphylococcus aureus (ATCC 25923), Bacillus subtilis,
Escherichia coli, and K. pneumoniae (MTCC 4030)

– [88]

Azadirachta indica Antibacterial Escherichia coli – [90]

Lantana camera Antibacterial Escherichia coli – [90]

Antifungal Aspergillus niger – [90]

Tridax procumbens Antibacterial Escherichia coli – [90]

Antifungal Aspergillus niger – [90]

Allium sativum Antibacterial Escherichia coli, Bacillus subtilis 75 and 50 μL,
respectively

[91]

Asparagus adscendens Antibacterial Staphylococcus aureus – [92]

Bacopa monnieri Antibacterial Bacillus subtilis, Escherichia coli, Pseudomonas aeruginosa – [92]

Nerium oleander Antibacterial Escherichia coli, Staphylococcus aureus, Bacillus subtilis, K.
pneumoniae, Salmonella typhi

35 μL [94]

Psidium guajava Antibacterial Escherichia coli, Staphylococcus aureus – [95]
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to 300 nm and the peak at 403 nm completely disappeared
which indicated the reduction of 4-NP to 4-AP without
any side product. A hypothetical mechanism for the re-
duction of 4-NP is shown in Fig. 7. In the mechanism, 4-
NP and sodium borohydride are present in the solution in
the form of ions. The protons of the borohydride ion are
adsorbing on the surface of the copper nanoparticles and
BO2 produced. 4-Nitrophenolate ions also adsorb on the
surface of the CuNPs. Due to the adsorption of both

protons and 4-nitrophenolate ion, CuNPs overcome the
kinetic barrier of reactants and 4-nitrophenolate ion is
converted into 4-aminophenolate ion. After conversion,
desorption of the 4-aminophenolate ion takes place and it
is converted into 4-aminophenol.

Conclusions
This paper has reviewed and summarized recent infor-
mation of biological methods used for the synthesis of

Fig. 6 Mechanism for antibacterial activity of copper nanoparticles

Fig. 7 Mechanism for the reduction of 4-nitrophenol
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copper nanoparticles (CuNPs) using different plants.
Green synthesis of CuNPs has been proposed as a
valuable alternative to physical and chemical methods
with low cytotoxicity, economic prospects, environment-
friendly, enhanced biocompatibility, feasibility, and high
antioxidant activity and high antimicrobial activity of
CuNPs. The mechanism of biosynthesis of NPs is still
unknown, and more research needs to be focused on the
mechanism of formation of nanoparticles and under-
standing of the role of phytochemicals in the formation
of NPs. This review gives data of plants used in the
synthesis of copper nanoparticles, synthesis procedure,
and the reaction parameters which affect the properties
of synthesized CuNPs. A phytochemical screening ana-
lysis is a chemical analysis used to identify the phyto-
chemicals such as detection of carbohydrates, tannins,
saponins, flavonoids, alkaloids, anthraquinones, and
anthocyanosides in different plants. The mechanism of
reduction of copper ion by quercetin and stabilization of
copper nanoparticles by santin is described in this paper.
Characterization techniques used in the literature for
copper nanoparticles are UV-vis, FTIR, XRD, SEM,
FESEM, TEM, PSA, MZS, EDX, NTA, SAXS, XRR, XRF,
XPS, BET, SAED, and AFM. Copper nanoparticles show
catalytic activity, antibacterial activity, cytotoxicity or
anticancer activity, antioxidant activity, and antifungal
activity in different applications. Hypothetical mecha-
nisms of antimicrobial activity and reduction of 4-nitro-
phenol with diagrams are shown in this paper.
CuNPs with different structural properties and effect-

ive biological effects can be fabricated using new green
protocols in the coming days. The control over particle
size and, in turn, the size-dependent properties of
CuNPs will open the new doors of their applications.
This study provides an overview of synthesis of CuNP
by using plant extract, microbial extract, and naturally
occurring biomolecules. Although all these green proto-
cols for CuNP synthesis have their own advantages and
limitations, the use of plant extract as a reductant is
more beneficial as compared to the use of microbial
extract because of the rapid rate of production of nano-
particles with former green reductant.
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